Войти / Регистрация
Корзина

  • Ваша корзина пуста
Войти / Регистрация
Корзина

  • Ваша корзина пуста

Статья «АНАЛИТИЧЕСКОЕ ПРОДОЛЖЕНИЕ ФУНКЦИИ АППЕЛЯ И ИНТЕГРИРОВАНИЕ СВЯЗАННОЙ С НЕЙ СИСТЕМЫ УРАВНЕНИЙ В ЛОГАРИФМИЧЕСКОМ СЛУЧАЕ, "Журнал вычислительной математики и математической физики"»

Авторы:
  • Безродных С.И.1
стр. 555-587
Платно
1 119991 Москва, ул. Вавилова, 40, ВЦ РАН
Ключевые слова:
  • гипергеометрические функции двух переменных
  • системы уравнений с частными производными
  • интегралы типа Барнса
  • аналитическое продолжение
Аннотация:
Рассматривается функция Аппеля F - обобщенная гипергеометрическая функция двух комплексных переменных - и соответствующая ей система уравнений в частных производных в логарифмическом случае, когда параметры функции F связаны специальными соотношениями. Для этого случая в работе построены формулы аналитического продолжения функции F за границу единичного бикруга, в котором она определена с помощью двойного гипергеометрического ряда. Для указанной системы уравнений также представлен набор канонических решений, которые являются двумерным аналогом решений Куммера, известных в теории классического гипергеометричекого уравнения Гаусса. Канонические решения для логарифмического случая записаны в виде обобщенных гипергеометрических рядов нового вида. Вывод формул продолжения осуществлен с помощью представлений F в виде контурных интегралов Барнса. Построенные формулы позволяют эффективно вычислять функцию Аппеля во всем диапазоне изменения ее переменных. Результаты работы находят ряд приложений, в том числе к решению проблемы параметров интеграла Кристоффеля-Шварца. Библ. 42.

Архивные статьи (2015 год и ранее) доступны для ознакомления бесплатно, для скачивания их необходимо приобрести. Для просмотра материалов необходимо зарегистрироваться и авторизоваться на сайте.

Чтобы приобрести доступ к материалу для юридического лица, пожалуйста, свяжитесь с администрацией портала с помощью формы обратной связи либо по электронному адресу libnauka@naukaran.com.  

Действия с материалами доступны только авторизованным пользователям.